ABL90 FLEX PLUS Blutgasanalysator

Ihr Blutgasanalysator für die patientennahe Sofortdiagnostik

  • Informationen anfordern

    Möchten Sie mehr erfahren über die Blutgasanalyse mit dem ABL90FLEX PLUS Analysator?

    Ja, ich möchte Neuigkeiten und Informationen von Radiometer an meine E-Mail-Adresse erhalten. Diesen Service kann ich jederzeit kündigen.
    Mit Übermittlung dieses Formulars bestätige ich, dass ich die Datenschutzerklärung gelesen und verstanden habe.
  • Mehr Produkte
  • Mit Creatinin und Harnstoff
  • Automatischer Einlass, automatisches Probenmischen
  • 45 µl Mikromodus für die Früh- und Neugeborenenintensivstation

Sie erhalten 19 kritische Parameter aus einem geringen Probenvolumen

Der ABL90 FLEX PLUS Blutgasanalysator wurde für Analysen am Point-of-Care in stark frequentierten Krankenhausabteilungen wie Notaufnahmen, Intensivstationen, Neugeborenenintensivstationen oder Kreißsälen entwickelt, in denen schnelle Ergebnisse aus sehr kleinen Blutproben für kritische diagnostische Entscheidungen unerlässlich sind.

 Der ABL90 FLEX PLUS liefert zuverlässige Ergebnisse für 19 Parameter – Blutgase, Elektrolyte, Metaboliten und Parameter der CO-Oxymetrie – aus Spritze, Kapillarröhrchen oder Reagenzglas in nur 35 Sekunden.

 Alles aus einer Blutprobe von nur 65 µl.

 Die breite Palette kritischer Parameter der Blutgasanalyse liefert sofort umfangreichere klinische Erkenntnisse für lebensrettende diagnostische Entscheidungen.


Gemessene Parameter

Blutgase: 
pH

Hydrogenenpotenzial

Der Grad der Azidität oder Alkalinität einer Flüssigkeit (einschließlich Blut) bezieht sich auf ihre Hydrogenionenkonzentration [H+], und die Bestimmung des pH-Werts ist eine Möglichkeit, die Hydrogenionenaktivität anzugeben. Das Verhältnis zwischen pH und Hydrogenionenkonzentration wird wie folgt beschrieben:

pH = -log aH+
wobei aH+ die Hydrogenionenaktivität ist.

Ein niedriger pH-Wert liegt bei Azidose vor, ein hoher pH-Wert bei Alkalose [1].

1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009.

, pCO2

Kohlendioxidpartialdruck

 

Kohlendioxid (CO2) ist ein säurebildendes Gas; der CO2 -Gehalt des Blutes wird weitestgehend durch die Rate und Tiefe von Atmung bzw. Ventilation bestimmt. pCO2 ist der Partialdruck von CO2 im Blut. Es ist der gemessene Druck, der vom Anteil (~5 %) des Gesamt-CO2 abgegeben wird, welcher in Gasform im Blutplasma verbleibt. pCO2 ist die respiratorische Komponente des Saure-Basen-Gleichgewichts und zeigt, ob die pulmonale Ventilation ausreichend ist. Schweregrad und Chronizität einer ventilatorischen Insuffizienz können anhand entsprechender Änderungen im Saure-Basen-Haushalt (siehe Säure-Basen-Status) beurteilt werden [1].

 

1. Higgins C. Parameters that reflect the carbon dioxide content of blood. www.acutecaretesting.org Oct 2008.

, pO2

Sauerstoffpartialdruck

Die Menge des Sauerstoffs im Blut wird durch viele Faktoren beeinflusst, z. B. durch Ventilation/Perfusion. pO2 ist der Sauerstoffpartialdruck des im Blut gelösten Sauerstoffs als Anteil am Gesamtdruck aller im Blut gelösten Gase. pO2 gibt nur einen kleinen Teil (1 – 2 %) des im Blutplasma gelösten Gesamtsauerstoffs an [1]. Die übrigen 98 – 99 % des im Blut vorhandenen Sauerstoffs sind an das Hämoglobin in den Erythrozyten gebunden. pO2 spiegelt primär die Sauerstoffaufnahme in der Lunge wider.

 

1. Wettstein R, Wilkins R. Interpretation of blood gases. In: Clinical assessment in respiratory care, 6th ed. St. Louis: Mosby, 2010.

Metaboliten: 
cGlu

Glucose

Glucose, das häufigste Kohlenhydrat im menschlichen Stoffwechsel, dient als größte intrazellulare Energiequelle (siehe Lactat). Glucose wird vorwiegend aus den Kohlehydraten unserer Nahrung gewonnen, aber auch durch den anabolischen Prozess der Glukoneogenese – primär in der Leber und den Nieren – und bei der Spaltung von Glykogen (Glykogenolyse) vom Körper selbst synthetisiert. Diese endogen gebildete Glucose tragt zur Aufrechterhaltung des Blutzuckerspiegels in normalen Grenzen bei, wenn keine Glucose aus der Nahrung zur Verfügung steht, z. B. zwischen zwei Mahlzeiten oder in Hungerzeiten.

, cLac

Lactat

Lactat ist ein Anion, das bei der Dissoziation von Milchsäure entsteht, sowie ein intrazellularer Metabolit von Glucose. Es wird von den Skelettmuskelzellen, den roten Blutkörperchen (Erythrozyten), im ZNS und anderem Gewebe wahrend der anaeroben Energiegewinnung (Glykolyse) produziert. Lactat entsteht in der Intrazellularflüssigkeit aus Pyruvat; die Reaktion wird durch das Enzym Lactatdehydrogenase (LDH) katalysiert [1].

 

1. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004; 287: R502-16.

, cCrea

Creatinin

Creatinin ist ein endogenes Abfallprodukt des Muskelstoffwechsels,das aus Creatin entsteht. Creatin ist ein Molekül, das bei der Energieproduktion in Muskelzellen eine große Rolle spielt. Creatinin wird aus dem Körper über den Urin ausgeschieden. Seine Konzentration im Blut spiegelt die glomeruläre Filtrationsrate und somit die Nierenfunktion wider.

, cUrea

Harnstoff


Harnstoff (Molekülformel CO(NH2)2) ist das primäre Stickstoffabfallprodukt des Proteinkatabolismus, welches durch den Urin ausgeschieden wird. Sie ist die vorrangige organische Komponente des Urins. Harnstoff wird über das Blut von der Leber zu den Nieren transportiert, wo er aus dem Blut herausgefiltert und in den Urin abgegeben wird.

Elektrolyte: 
cCa2+

Calcium

Das Calciumion (Ca2+) ist eines der vorherrschenden Kationen des Körpers, wobei sich ca. 1 % in der Zellflüssigkeit des Bluts befindet. Ca2+ spielt eine relevante Rolle bei der Knochenmineralisierung und bei vielen zellularen Prozessen, z. B. der Kontraktilität der Herz und Skelettmuskulatur, der neuromuskulären Überleitung, bei der Hormonfreisetzung sowie bei zahlreichen Enzymreaktionen wie z. B. der Blutgerinnung.

, cCl-

Chlorid

Chlorid (Cl) ist das zentrale Anion der Extrazellulärflüssigkeit und eines der wichtigsten Anionen im Blut. Die Hauptfunktion von Clist, den osmotischen Druck, das Flüssigkeitsgleichgewicht, die Muskelaktivität und die Ionenneutralität im Plasma aufrechtzuerhalten. Zudem unterstützt es die Erkennung von Ursachen bei Störungen des Säure-Basen-Haushalts.

, cK+

Kalium

Kalium (K+) ist das größte Kation der Zellflüssigkeit. Die intrazelluläre Konzentration ist 25– bis 37-fach hoher (∼150 mmol/L) in den Gewebezellen, ∼105 mmol/L in den Erythrozyten) als die der Extrazellularflüssigkeit (∼4 mmol/L) [1, 2]. K+ übt zahlreiche Vitalfunktionen im Körper aus, z. B. reguliert es die neuromuskuläre Erregbarkeit, den Herzrhythmus, das Volumen im Intra- und im Extrazellularraum sowie den Säure-Basen-Haushalt.

1. Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. St. Louis: Saunders Elsevier, 2012. Engquist A. Fluids/Electrolytes/Nutrition. 1st ed. Copenhagen: Munksgaard, 1985.
2. Engquist A. Fluids/Electrolytes/Nutrition. 1st ed. Copenhagen: Munksgaard, 1985.

, cNa+

Natrium

Natrium (Na+) gilt als dominierendes Kation in der Extrazellulärflüssigkeit. Dort liegt es in 14-fach höherer Konzentration (∼140 mmol/L) vor als in der Intrazellulärflüssigkeit (∼10 mmol/L). Na+ trägt maßgeblich zur Osmolalität der Extrazellulärflüssigkeit bei, und seine Hauptfunktion liegt in der Steuerung und Regulation des Wasserhaushalts sowie der Aufrechterhaltung des Blutdrucks. Außerdem ist Na+ wichtig für die Übermittlung der Nervenimpulse und die Aktivierung der Muskelverdichtung.

Oxymetrie: 
ctBil

Bilirubin

Bilirubin ist ein gelbes Abbauprodukt des Häm-Anteils von Hämoglobin. Es wird vom Ort seiner Produktion – dem retikuloendothelialen System – zur Leber transportiert, wo es vor der Ausscheidung in Gallenflüssigkeit transformiert wird (Biotransformation). Ikterus, die pathologische gelbe Verfärbung der Haut, entsteht bei einer abnormen Akkumulation von Bilirubin im Gewebe und ist immer mit einer erhöhten Bilirubinkonzentration im Blut (Hyperbilirubinämie) assoziiert.

, ctHb

Gesamthämoglobin


Die Konzentration des Gesamthamoglobins (ctHb) im Blut schließt auch Oxyhämoglobin (cO2Hb), Desoxyhämoglobin (cHHb), und die dysfunktionalen Hämoglobine ein, die nicht in der Lage sind, Sauerstoff zu binden:

Carboxyhämoglobin (cCOHb) (siehe COHb), Methämoglobin (cMetHb) (siehe MetHb) und Sulfhämoglobin (cSulfHb).

Deshalb:

ctHb = cO2Hb + cHHb + cCOHb + cMetHb + cSulfHb

Das seltene sulfHb ist nicht in den berichteten ctHb-Ergebnissen der meisten Oxymeter enthalten.

 

, FHbF

Fraktion des fetalen Hämoglobins


FHbF Gesamthämoglobin im Blut.

, FHHb

Fraktion des Dexoxyhämoglobins


FHHb Gesamthämoglobin im Blut

, sO2

Sauerstoffsättigung


Als Sauerstoffsättigung (sO2) bezeichnen wir den prozentualen Anteil des oxygenierten Hämoglobins (O2Hb) bezogen auf das Hämoglobin, das Sauerstoff transportieren kann [1].


sO2 spiegelt die Nutzung der aktuell verfügbaren Sauerstofftransportkapazität wider.

 

In arteriellem Blut werden 98 – 99 % des Sauerstoffs gebunden an Hämoglobin in den Erythrozyten transportiert. Die übrigen 1 – 2 % des im Blut transportierten Sauerstoffs liegen gelöst im Blutplasma vor – das ist der Anteil, der als Sauerstoffpartialdruck (pO2) bezeichnet wird [2].

 

1. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009.

2. Higgins C. Parameters that reflect the carbon dioxide content of blood. www.acutecaretesting.org Oct 2008.

, FO2Hb

Fraktion des Oxyhämoglobins


FO2Hb Gesamthämoglobin im Blut

Ihr Blutgasanalysator mit erweitertem Testmenü

Mit den zusätzlichen Parametern Creatinin und Harnstoff für die Blutgasanalyse bietet Ihnen der ABL90 FLEX PLUS Blutgasanalysator eine breite Palette von Notfallparametern in einem Kompaktgerät.

 
Die Bestimmung von Creatinin und Harnstoff am Point-of-Care ermöglicht Ihnen die schnelle Beurteilung der Nierenfunktion Ihrer kritisch kranken Patienten.

 
Schauen Sie sich das Video an und erfahren Sie, wie der ABL90 FLEX PLUS Blutgasanalysator neue Standards setzt für Turn-around-Time, Bedienerfreundlichkeit, Parameterprofil und Zuverlässigkeit der Ergebnisse.

Verbessern Sie den Patientenfluss in der Notaufnahme mit mehr STAT-Parametern

Schnelle Testergebnisse sind ein entscheidender Faktor zum Vermeiden einer überfüllten Notaufnahme.


Durch die Bestimmung von Creatinin-Werten am Point-of-Care können Patienten mit akutem Nierenversagen (ANV) schnell identifiziert werden. Zudem kann der Nierenstatus vor einer CT- oder MRT-Untersuchung bestimmt werden, um das Risiko eines kontrastmittelinduzierten Nierenversagens zu beurteilen [1-3].


Creatinin- und Harnstoffwerte können auch bei der Beurteilung einer Dehydrierung sowie der Identifizierung der Ursache einer gastrointestinalen Blutung hilfreich sein [1, 2].


Mit Creatinin und Harnstoff als STAT-Parameter können bei der Triage schneller diagnostische Entscheidungen getroffen und damit der Patientenfluss in der Notaufnahme verbessert werden – somit finden zwei erhebliche Prozessverbesserungen statt.

Arbeitsabläufe auf der Intensivstation optimieren: kein Warten auf die Ergebnisse aus dem Labor

Durch die Verfügbarkeit der Ergebnisse direkt auf der Intensivstation treffen Sie fundierte Entscheidungen für die Behandlung Ihrer Patienten jetzt noch schneller.

Der Nutzen von Creatinin und Harnstoff auf der Intensivstation:

  • Dienen der Überwachung der Nierenfunktion Ihres Patienten [2]
  • Liefern Hinweise auf ein Herzversagen [2]
  • Überwachen die Wirksamkeit der Hämodialyse und unterstützen Sie bei der Bestimmung des Schweregrades einer Pankreatitis [2]
  • Liefern frühe Hinweise auf eine chronische Nierenerkrankung und ermöglichen so zeitnah eine geeignete Behandlung [2]

Die clevere Lösung für die Notfalldiagnostik

Kontaktieren Sie uns, wenn Sie erfahren möchten, wie schnell und zuverlässig der ABL90 FLEX PLUS Blutgasanalysator Creatinin- und Harnstoffwerte und 17 weitere Parameter liefert.

Wir kontaktieren Sie so schnell wie möglich per Telefon oder E-Mail.

Verwandte Wissensquellen

Sie benötigen Handbücher, Broschüren und andere Dokumente?

Durchsuchen Sie die Bibliothek nach Dokumenten, erhalten Neuigkeiten von Radiometer, sehen die aktuellsten Artikel von acutecaretesting.org ein und vieles mehr.

Ihr Leitfaden zur Blutgasanalyse

Mithilfe der Blutgasanalyse wird der Säure-Basen-Haushalt eines Patienten mit einer respiratorischen oder metabolischen Störung bestimmt. Die Videos dienen dem Verständnis der Blutgasanalyse.

Das Radiometer Handbuch der Notfalldiagnostik

Die wichtigsten Notfallparameter – jetzt zusammengefasst in einem Handbuch.

Auf dieser Website werden Cookies verwendet

Verwendung von Cookies
Bestätigen Sie Ihr Konto bei Radiometer

Bitte geben Sie eine gültige E-Mail-Adresse ein

WEITER
Mit dem Absenden Ihrer E-Mail erklären Sie sich mit der Datenschutzerklärung einverstanden
Radiometer verwendetMicrosoft Azure AD, um den Kundenzugriff zu authentifizieren. Wenn Sie bereits registriert sind, werden Sie zu Microsoft Azure AD weitergeleitet, um sich mit Ihren Microsoft Azure AD-Zugangsdaten anzumelden.
Sie sind bereits registriert.
Radiometer verwendetMicrosoft Azure AD, um den Kundenzugriff zu authentifizieren. Wenn Sie bereits registriert sind, werden Sie zu Microsoft Azure AD weitergeleitet, um sich mit Ihren Microsoft Azure AD-Zugangsdaten anzumelden.
Vielen Dank

Wir senden Ihnen in Kürze eine E-Mail-Einladung, damit Sie sich mit Microsoft Azure AD anzumelden können

Radiometer verwendetMicrosoft Azure AD, um den Kundenzugriff zu authentifizieren.
Hinweis:

Es scheint, dass Ihre E-Mail nicht bei uns registriert ist

Radiometer verwendetMicrosoft Azure AD, um den Kundenzugriff zu authentifizieren. Wenn Ihre E-Mail nicht bei uns registriert ist, klicken Sie auf WEITER. Wir werden Sie durch den Anmeldeprozess führen.
Wir haben Ihnen zuvor eine Einladung per E-Mail gesendet

Bitte klicken Sie "Einladung annehmen" in der E-Mail um den Registrierungsprozess abzuschließen

Radiometer verwendetMicrosoft Azure AD, um den Kundenzugriff zu authentifizieren.
Hinweis:

Aufgrund eines Kommunikationsfehlers konnten wir Ihre Anfrage nicht bearbeiten

Hinweis:

Es scheint, dass dieses Konto keinen Zugriff auf das Portal erhalten hat

Radiometer nutzt Microsoft AZURE Active Directory, um Kunden und Partnern sicheren Zugriff auf Dokumente, Ressourcen und andere Services in unserem Kundenportal zu bieten.

Wenn Ihre Organisation bereits AZURE AD verwendet, können Sie mit denselben Zugangsdaten auf das Kundenportal von Radiometer zugreifen.

Die wichtigsten Vorteile
  • Ermöglicht die Verwendung vorhandener Active Directory-Anmeldedaten
  • Benutzerfreundliches Single-Sign-On-Verfahren
  • Dieselben Anmeldedaten für den Zugriff auf künftige Dienste verwenden

Zugriff beantragen

Sie erhalten per E-Mail eine Einladung zum Zugriff auf unsere Dienste, wenn Ihre Anfrage genehmigt wurde.

Wenn Sie die Einladung annehmen und Ihre Organisation bereits AZURE AD verwendet, können Sie mit denselben Zugangsdaten auf das Kundenportal von Radiometer zugreifen. Andernfalls wird automatisch ein Konto für Sie erstellt.